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We first consider the Boltzmann equation with a collision kernel such that all 
kinematically possible collisions are run at equal rates. This is the simplest 
Boltzmann equation having the compressible Euler equations as a scaling limit. 
For it we prove a stability result for the H-theorem which says that when the 
entropy production is small, the solution of the spatially homogeneous 
Boltzmann equation is necessarily close to equilibrium in the entropic sense, and 
therefore strong L 1 sense. We use this to prove that solutions to the spatially 
homogeneous Boltzmann equation converge to equilibrium in the entropic sense 
with a rate of convergence which is uniform in the initial condition for all initial 
conditions belonging to certain natural regularity classes. Every initial condition 
with finite entropy and pth velocity moment for some p > 2 belongs to such a 
class. We then extend these results by a simple monotonicity argument to the 
case where the collision rate is uniformly bounded below, which covers a wide 
class of slightly modified physical collision kernels. These results are the basis of 
a study of the relation between scaling limits of solutions of the Boltzmann 
equation and hydrodynamics which will be developed in subsequent papers; the 
program is described here. 

KEY WORDS: Boltzmann equation; entropy; central limit theorem; 
hydrodynamics. 

1. I N T R O D U C T I O N  

W e  b e g i n  w i t h  t he  a n a l o g y  w h i c h  is t he  b a s i s  of  th i s  p a p e r .  

L e t  Vx a n d  V2 be  i n d e p e n d e n t  z e r o - m e a n ,  u n i t - v a r i a n c e ,  N3-va lued  

r a n d o m  v a r i a b l e s  w i t h  t he  s a m e  d e n s i t y  f ( v ) .  T h e n  c lea r ly  (Vl  + V2)/x /~ 
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has the d e n s i t y ~ R ~ f ( ( v + v ' ) / ~ ) f ( ( v - v ' ) / x / 2 ) d 3 v  '. Now fix a proba- 
bility density fo on ~3 with zero mean and unit variance. Inductively define 
the sequence of densities n ~-~ fn by 

,A /s"t ,A d3 , (1.1) 

Then each f,, is zero mean, unit variance, and n w-~ f ,  uniquely solves the 
difference equation 

f.+s(v)- f.(v)= f~3 [f. {v+v' x/-~ j f .  \ x/-~ j{v-v'~- f.(v) f.(v')] d3v' (1.2) 

with the specified 'initial density. Moreover, the classical central limit 
theorem says that 

at least weakly. 

1 ~ 3/2 
nlim fn(V) = \~-~j e ~2/2 

The Boltzmann collision kernel ~ ( f , f )  is a quadratic operator on 
probability densities closely related to the quadratic operator appearing on 
the right side of (1.2). It exact form is given below, but before concerning 
ourselves with the details, recall that if we take f0 as initial data for the 
spatially homogeneous Boltzmann equation 

8 
= L ( v )  = ~( f , ,  L)(v)  (1.3) 
Of 

then each f ,  is a zero-mean, unit-variance probability density and 

(1"~ 3/2 
tlimoo f t ( v )  : \~-~gll e vz/2 

at least weakly for a large class of collision kernels ~,(2,14) 
There is evidently a very close analogy between the convergence 

described by the central limit theorem and the convergence to equilibrium 
described by the Boltzmann equation. This analogy is not new here; 
aspects of it have been discussed in the work of McKean, Toscani, and 
others as well. However, we shall develop novel aspects of this analogy 
here, permitting the application of probabilistic ideas and inequalities to 
obtain new results on the Boltzmann equation. 

In fact, the main technical tool we use is an entropy production 
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inequality adapted from work by Carlen and Soffer (17) on central limit 
theorems for block sums of dependent random variables. Our entropy 
production inequality is a strengthening of the "H-theorem" valid at least 
for a wide class of collision kernels. From it we obtain information on the 
rate of strong LI(~ 3) convergence to equilibrium of solutions to the 
spatially homogeneous Boltzmann equation which is stable in that we have 
control on how the rate varies when the initial condition is varied. In a 
forthcoming paper we apply this to control Euler scaling limits of solutions 
of the full Boltzmann equation and to establish new results concerning the 
connection between the Boltzmann equation and the Euler equations. But 
before proceeding further to describe our results and methods, we first 
establish some notation concerning the Boltzmann equation, and then 
discuss the problem to which our work is addressed; namely, that of 
establishing stable rate bounds. 

The phase space density fr(x, v) of a gas of particles moving freely 
between elastic collisions is supposed to satisfy the Boltzmann equation 

0 
N f , (x ,  v) = - v  . V~f , (x ,  v) + ~ ( f , ,  f , ) (x ,  v) (1.4) 

at least under appropriate assumptions on the mean free path and the 
nature of the collisions. The first term on the right accounts for the changes 
in the density due to streaming, i.e., the local average free motion of the 
particles between collisions. The second accounts for the changes in density 
due to the collisions themselves. On the basis of mechanical considerations 
and the "collision number hypothesis," Boltzmann derived 

~ ( f ' f ) = J s  2 3 [ f ( ~ ) f ( g ' ) - f ( v ) f ( v ' ) ] b ( t v - v ' l ' 0 ) d 3 v  'dee (1.5) 

The notation is this: co is any unit vector, and 

O=v+(co.(v'-v))ee, f /=v ' - (ee . (v ' -v ) )ee  (1.6) 

denote the resultant velocities in the elastic collision (v, v ' ) ~  (~, ~'). Also, 
de) is the uniform probability measure on S 2. Finally, ~ is the angle 
through which the relative velocity is deflected during this collision, and 
the microscopic rate function b(lv-v'], ~) is the product of the relative 
speed Iv-v'E and the differential cross section a ( l v -v ' l ,  0) for this colli- 
sion. Under natural symmetry conditions o- depends only on the indicated 
variables. For more information, see Cercignani's book (2~ or, more briefly, 
Dresden's lectures. (29) 
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When the density is initially spatially homogeneous, it remains so at 
later times. There are then no streaming effects, and the density satisfies the 
spatially homogeneous Boltzmann equation (1.3). We normalize the initial 
density to be a probability density instead of a mass density. Then 
~3ft (v)d3v= 1 for all t, and we define the bulk velocity u and the 
temperature 0 by 

;o u= 3vf,(v)dBv, 0=-~ 31v-ulaf,(v) dgv 

These quantities are conserved as well, representing conservation of 
momentum and energy. (Conservation of 0 can in general be delicate; see 
ref. 1.) 

Velocity densities of the form 

Mu, o(V) = (2~0) - 3 / 2 e  - I v  - ul2/20 

are called Maxwellian. They are determined by their bulk velocities and 
temperatures. If f is any velocity density with finite second moments, we 
write M f to denote the Maxwellian with the same bulk velocity and 
temperature. 

The entropy H(f )  of a velocity density f with finite second moments 
is given by 

H(f )  = - f~3 f (v)  In f (v)  d3v 

and is always well defined, though it may take the value - ~ .  Two 
classical results concerning entropy and the Boltzmann equation are basic 
to any study of the subject. 

The first result, due to Gibbs, (33) is quite simple; in the notation 
introduced above 

H(f )  <~ H(M f) (1.7) 

with equality exactly when f =  M f To see this, introduce the relative 
entropy D(f )  between f and M s, which is given by 

By Jensen's inequality, D(f)>>. 0, with equality exactly when f = M f. But 
In M f is quadratic, and since f and M y share the same second moments, 
D(f )  = H(M f) -- H(f).  
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The second result is of a similar nature, and is only slightly more 
complicated to prove, but it is much more profound. It is Boltzmann's 
H-theorem, which says that 

- f~3 in f (v)  ~ ( f  f)(v) d3v >>. 0 (1.8) 

with equality exactly when f = M s. 
The quantity on the left side of (1.8) is called the entropy production 

because for solutions of the spatially homogenous Boltzmann equation, 
this quantity equals (d/dt)H(f,). Thus, H(f~) is strictly increasing unless 
f =  M f. This implies that Maxwellian densities are the only equilibria, but 
it does not suffice to describe the approach to equilibrium or even to 
establish that 

lim f t  = Mz~ 

This was first done by Carleman, (~3) who treated a hard-sphere gas and 
proved a compactness property of {ft l t  >~ 0}, and then used the statement 
concerning cases of equality in the H-theorem to identify any limit as being 
M z~ Of course, such an argument cannot give any information on the rate 
at which f ,  approaches M z~ 

We emphasize rate information because rate bounds are physically 
significant. In fact, it is expected that f ,  approaches M/~ quite rapidly, i.e., 
on the scale of the time between collisions. Since streaming changes the 
density only on a much longer macroscopic time scale, there should then 
be a separation between the time scale on which collisions and streaming 
act. 

This separation of scales is the basis of a physical picture for the evolu- 
tion of the phase space density of a spatially inhomogeneous gas. (3z38'58) 
The physical picture which relates the Boltzmann equation to the equations 
of hydrodynamics is the following: The collisions going on at each location 
x rapidly drive the local velocity distribution very close to the local 
Maxwellian 

1  )3j2 
p(x, t) 2 O(x, e 

conserving the local density, bulk velocity, and temperature before 
streaming has time to effect any appreciable influence. We think of the 
set of all phase space densities as a "manifold" and the set of all local 
Maxwellian densities as a "submanifold" parametrized by the five hydro- 
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dynamic moments p, u, and 0. Since ~(f, f )  vanishes on this submanifold, 
the streaming becomes relatively significant near it, and the phase space 
density then evolves under the combined influence of streaming and colli- 
sions, with collisions always keeping it essentially on the "submanifold" of 
local Maxwellian densities, toward a global Maxwellian equilibrium. 

Thus, after a short initial period, the evolution of the phase space 
density is well described by specifying the evolution of its approximate 
coordinates on the submanifold of local Maxwellian densities, i.e., the 
hydrodynamic moments p, u, and 0. One can compute the evolution of 
these in appropriate scaling limits, and one finds that they should satisfy 
the Euler or Navier-Stokes equations, depending on the scaling employed. 
See ref. 7 for a particularly helpful heuristic discussion of these scaling 
limits. 

Much work has been done on the connection between the Boltzmann 
equation and hydrodynamics. (11'12'23'35'37'42'47'51'59) Howevery, many basic 
issues are still unresolved. In fact, most rigorous work is based on a Hilbert 
or a Chapman-Enskog-Hilbert expansion for solutions of the Boltzmann 
equation. While this approach has led to a number of very substantial 
theorems, its physical basis is somewhat unclear, (29'48) especially as regards 
the higher order hydrodynamic equations, such as the Burnett equations, 
which one obtains on continuing the expansion. Moreover, error terms 
for these expansions have only been controlled for as long as the 
hydrodynamic equations possess smooth solutions. But Sideris (53) has 
shown that the compressible Euler equations, for example, develop 
singularities in arbitrarily short times even for "small" initial data. 

Since the physical picture discussed above hinges very much on the 
separation between the time scales of the collision process and the 
streaming process, it is expected that strong information on the rate at 
which f t  approaches M f~ for the spatially homogeneous case would help to 
resolve a number of questions concerning the relation between the 
Boltzmann equation and the equations of hydrodynamics. The main result 
of this paper is a strengthing of the H-theorem which yields such informa- 
tion. It should be stressed that the methods we employ here work directly 
only for special collision kernels. In fact, we will at first restrict our attention 
to the case where b(Ivl, ~) is independent of both Ivl and & We will then 
extend our entropy production bounds to the class of collision kernels 
whose rate functions are uniformly bounded below with a simple mono- 
tonicity argument. Roughly: the bigger the rate function, the more 
collisions there are; and the more collisions the are, the more entropy there 
is produced. Independence of Ivl is more crucial to our argument than 
independence of ~9, so quite possibly the methods can be adapted without 
major modification to treat directly Maxwellian molecules as well. 
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However, the simple Boltzmann equation with uniform collision rate which 
we do treat directly is of interest in itself. It is the simplest Boltzmann 
equation which has the compressible Euler equations as a scaling limit. Its 
nonphysical nature would show up in physical properties depending on the 
spectrum of the linearized collision operator such as viscosity and heat 
diffusion constants, but there are none of these on the Euler scale. It is thus 
natural to study the relation between the Boltzmann equation and the 
Euler equations in this simplest special case first. 

Our method for obtaining rate information is based on stability results 
for the two strict inequalities (1.7) and (1.8). That is, we use results 
showing that if f nearly saturates one of these inequalities, then it is 
necessarily close to M F. 

The first of these stability results is well known: 

D(f) >1 �89 Mr l l  2 LI(R 3) 

In the context of information theory, this inequality goes back to Csizlar (21~ 
and Kullback, (36) while in the present context it was later independently 
discovered by Cercignani. (2~ 

The second is our main result, a stability result for the H-theorem in 
the case of the special collision kernels we consider. Before stating it, we 
introduce two functions associated with any velocity density with zero bulk 
velocity and unit temperature. 

First put 

Of(R) = j Ivi2f(v) d3v 
Fvl >/R 

Clearly Of decreases to zero, and the rate at which is does so measures the 
localization of f in velocity space. 

Before specifying the next function, define for each ~c > 0 

P~f(v )  = fa3 [2~(1 - r-2~)] -3/2 

x {exp[ - t v  - v'l 2/2(1 - e--2K)1/2] } e3,<f(e~.v,) d3v , 

which is a sort of Maxwellian regularization of f. The operators ~ 
constitute the adjoint Ornstein-Uhlenbeck semigroup, which plays an 
important role in our analysis. 

The second function mentioned above is given by 

Zf(~c) = H ( ~ f )  -- H ( f )  
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We will show in Section 3 that if H(f)  is finite, then Zf is a positive, con- 
tinuous, strictly increasing (unless f =  M f) function of ~c. Also, for each 
~c > 0, f ~  Zf(•) is strictly convex. Like D, it is a measure of the deviation 
of f from M f, and it is a mild measure of the smoothness of f 

We can now roughly formulate our stability result; a careful formula- 
tion is given in Section 4. 

For any pair of continuous functions ~ and Z which are, respectively, 
decreasing to zero and increasing from zero, there is a function ~b~,.z which 
is strictly increasing from zero, and which depends only on ~ and Z so that 
for all velocity densities f with zero bulk velocity, unit temperature, and 
finite entropy satisfying 

Of~< ~h, ZT<Z (1.9) 

it holds that 

- fa~ In f ~ ( f ,  f )  d3v >~ q~,,x(D(f)) (1.10) 

We can apply this to the Boltzmann equation because of two further 
results. First, it is possible to show that for any fo with zero bulk velocity, 
unit temperature, and finite entropy, there is a continuous function 
increasing from zero and depending only on Z f0 so that 

~ < Z  

for all t, where f~ is the solution of (1.3) starting from fo. 
It would be very useful, here and elsewhere, to known the analogous 

statement for ~p. We can prove it fairly easily in the context of the central 
limit theorem, (16) but the problem is more difficult for the Boltzmann 
equation and remains open. 

Therefore, we must now assume that ~R3 iv] Pfo(v) d3v is finite for some 
p > 2. A result of Elmroth r176 then implies that for all t this moment is 
bounded uniformly in t. This readily implies the existence of a ~ depending 
only on Sa3 ]vlPf(v) d3v and decreasing to zero so that 

for all t. Then, since (d/dt)D(ft)= -(d/dt)H(ft), 

d 
dt D(f,) ~< --(/)r (1.11) 
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Clearly this provides information on the rate of decrease of D(ft), and 
hence Ilf~-Mf~ as well by the first stability result. In particular, it 
implies that as long as the initial condition is varied within the class 

{fo f~3 ]~]P fo(1))d3v~ B, Zfo~X} 

for some fixed p > 2, B < ~ ,  and Z increasing continuously from zero, the 
strong rate of convergence to equilibrium is uniformly controlled. 

In fact, it is possible to proceed further with the methods introduced 
here and to calculate the dependence of ~o.z on ~ and Z; i.e., to give a 
formula for it. This will be done in the second paper of this series, and 
again the argument is adapted from the used to prove a similar result on 
the central limit theorem. (18) This allows one to read off an explicit rate 
for the convergence to equilibrium, but the method is complicated and 
therefore extravagant, so that the rate is only sharp in rather special 
circumstances. Moreover, it is the above explicit condition for uniformity of 
the ra te - -not  the rate itself--which plays the crucial role in our forth- 
coming study of the relation between the Boltzmann equation and the 
compressible Euler equations. 

Results asserting strong L 1 convergence to equilibrium have been 
obtained in a very general setting by Gustafsson ~34) and Arkeryd. (2'3) 
However, their results do not give any indication as to how the rate might 
vary with the initial condition. There is some other rate information 
available; Truesdell (571 has shown that all finite moments converge 
exponentially fast to their equilibrium values in the Maxwellian case. 

Stability results for both (1.7) and (1.8) were conjectured by 
Cercignani, (19) whose paper can be consulted for other ways in which they 
might be useful. In fact, Cercignani conjectured somewhat more than we 
have proved here; namely, that (1.10) holds for quite general collision 
kernels with @~,.z(D(f)) being a positive multiple of D(f). In general, 
depending on the assumed regularity, our function q~ will vanish faster than 
linearly at the origin. This may well be spurious, but as explained above, 
it is no obstacle to our intended applications. 

McKean (44) has studied the rate of convergence to equilibrium in the 
Kac model, which is a one-dimensional model Boltzmann equation. In this 
context he conjectures (1.10) without specifying the nature of the positive 
term on the right side. The methods we use in this paper all apply to the 
Kac model, and as we will show elsewhere, allow us to answer several 
questions raised by McKean in his paper. As mentioned earlier, his paper 
is also informed by an analogy with the central limit theorem-- to  which we 
will soon return. We have drawn a number of technical and general ideas 
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from McKean's paper, and in fact it was the starting point of our 
investigation. 

The only other result expressing a stability property of the entropy 
production by the Boltzmann equation is due to Desvillettes, ~24~ who shows 
that for any R > 0 there is a constant CR so that 

where the infimum is taken over all Maxwellian densities M. The proof 
gives no information on the way CR depends on R, so the right side is not 
comparable to D(f), and one does not obtain a differential inequality such 
as (1.11) from Desvillettes' results. However, he is able to derive his bounds 
for a very wide class of collision kernels. 

Finally, we mention the work of Toscani, ~55'56) whose preprints were 
brought to our attention by Arkeryd after this work was publicly presented. 
Toscani's papers do not contain any of our main results, but he is 
motivated by the same analogy with the central limit theorem. For  two- 
dimensional Maxwellian molecules, he proves entropic convergence to 
equilibrium using methods Barron ~8) developed for the central limit 
theorem to prove a strong compactness result. Then he uses Carleman's 
classical argument to identify any limit as Maxwellian. This gives no rate 
information, and he does not discuss stability for the H-theorem. However, 
any reader who has read this far into our paper will find Toscani's papers 
very interesting. 

We now return to the analogy with the central limit theorem, and 
explain its relevance to the program we have been discussing. 

Let us rewrite (1.1) as f ,  +1= fn-k fn; evidently -k is a rescaled con- 
volution. A special case of the Shannon-Stam inequality ~52'54) says that 

H ( f * f ) ~ H ( f )  

which equality exactly when f is normal, i.e., Gaussian. Thus the Shannon-  
Stam inequality plays the role of the H-theorem for the difference equation 
(1.2). 

However, as with the Boltzmann equation, it is not immediately clear 
that 

lim H(fn) = H((2~) -3 /2e  -I12/2) (1.12) 

even already knowing the central limit theorem, since H is only weakly 
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upper semicontinuous. This was first established in general by Barron, (8~ 
building on previous work of Brown (1~ and Linnik. (4~ Barron's com- 
pactness argument, however, gives no rate information. 

A stability result for the Shannon-Stare inequality was proved in 
ref. 17. As a special case, it says that for f satisfying (1.9) 

H ( f  * f )  - H(f)  >~ ~bo, z(D(f) )  (1.13) 

for some qs~0,z as before. 
It is easy to show that for any fo with zero mean, unit variance, and 

finite entropy, one can find continuous functions ~0 and Z, respectively 
decreasing to zero and increasing from zero, so that 

for all n, where fn is the solution of (1.2) starting from fo- But then we may 
apply (1.13) uniformly at each n and conclude that (1.12) holds. In 
particular, we will obtain a uniformity result on the rate of entropic 
convergence to the normal distribution. 

The stability inequality (1.13) has other implications; in ref. 17 it was 
used to control the effects of dependence and prove central limit theorems 
for sums of dependent random variables. 

Returning to the Boltzmann equation, it has been observed a number 
of times that the gain term in the collision kernel 

fs2 ;~3 f(~) f ( Y )  b(Iv - v'l, o) d~v ' d~ 

is especially close to being a sort of rescaled convolution, as in (1.1), when 
b is independent of I v -  v'l. This was done by Wild (6~ in 1951, whose ideas 
are discussed more carefully in the next section. Briefly, however, with v 
denoting the spherical average of b, i.e., the average collision rate, Wild 
defined an operation f ~ f o f on densities by 

The homogeneous Boltzmann equation can then be written as 

~ f,(v)= v[Lo f , ( v ) - J ; (v ) ]  
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This enables us to prove an intermediate bound for the entropy 
production; namely 

- f~3 In f , (v )  ~ ( f , ,  .f,)(v) d3v >~ v [ H ( f ,  of , )  - H(J;)]  (1.14) 

Formally the proof is very simple. Let dt be infinitesimal so that 

ft+at =f~ + v [ L ~  dt = v dt f~ ~  + (1 - v d t ) f t  

Then since H is a concave function of the entropy, 

H(f~+d,) -- H(f~) = H(v dt f t  ~ f t  + (1 - v d t ) f t )  - H ( f t )  

>~ v at H ( f ,  of t)  - v at H ( f , )  

Now formal division by dt yields (1.14). We make this argument rigorous 
in the next section. 

Moreover, we will show by another simple convexity argument that 
the right side of (1.14) is strictly positive unless f ,  = M f~ The analogy with 
the Shannon-Stam inequality is now quite clear. And fortunately it turns 
out to be close enough that we can adapt the techniques used to pore 
stability for it to prove stability for the H-theorem here. 

Actually, we will only proceed directly along this route when b is inde- 
pendent of 0 as well. But then the results transfer to all collision kernels 
with the rate b bounded below by monotonicity in b of the entropy produc- 
tion, as we will show in the final section. 

Section 2 contains background on the Wild form of the homogeneous 
Boltzmann equation in our setting and contains preliminary entropy 
estimates. Section 3 contains some Fisher information estimates which we 
use to obtain our final entropy estimates. As we will explain there, many 
entropy inequalities are most easily proved via a Fisher information 
inequality. This strategy was developed by Stam (54) in his proof of the 
Shannon-Stare inequality, which had been conjectured by Shannon. (52~ 
A very different proof is given in Lieb's paper, (39~ which was one of our 
original motivations for contemplating the Shannon-Stam inequality in the 
context of statistical mechanics. Section 4 contains the precise statements 
and the proofs of our main results. 

2. P R E L I M I N A R Y  E N T R O P Y  B O U N D S  

We now restrict our attention, until the end of Section 4, to the 
Boltzmann equation in which the microscopic rate function is a constant v. 
This means that all kinematically possible collisions are assigned equal 
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probability. It is possible that the methods we employ here can be extended 
to cover directly the case where the microscopic rate function b depends 
only on the scattering angle ~ and not the relative velocity, and moreover 

b(O) dco = b(O) sin 0 d~9 = v < oo 
2 

This includes the case of cutoff Maxwellian molecules, i.e., molecules inter- 
acting through a 1/r s force law, but with small-angle collisions sup- 
pressed--the class of generalized Maxwellian collision kernels. However, 
since we will be able to make an easy extension to many such cases and 
more by an additional but simple monotonicity argument, we have not 
delved into the matter. 

The main goal of this section is to establish a preliminary lower bound 
for the entropy production in our setting. 

Wild (6~ observed that for generalized Maxwellian collision kernels, 
and therefore in our case, the homogeneous Boltzmann equation can be 
rewritten as 

0 
~ f~(v) = v[ f t  oL(v) - f~(v)] (2.1) 

where is our case 

1 (, ~. 

denotes the Wild convolution of the densities f and g. 
Wild rewrote (2.1) as an integral equation and solved it by iteration 

under some assumptions. Morgenstern (49's~ developed Wild's method 
further and showed that (2.1) is uniquely solvable in L~(N 3, (1 + Ivj z) d3v) 
for all nonnegative initial data in this space. Moreover, DiBlasio (36'37) 
showed that 5~3ft(v)d3v, i~3 vf,(v) d3v, and 5u3 tvl2ft(v)d3v are all con- 
served, and t~--~f, is strongly differentiable in LI([~ 3, (1 "k-Ivl 2) d3v). Other 
useful information on Wild's method can be found in refs. 44 and 46. 

The main result of this section is the following theorem: 

T h e o r e m  2.1. For all velocity densities fo in LI(~ 3, (1 + Ivl 2) dgv) 
with H ( f o ) >  - o %  t ~ H( f , )  is continuous on [0, oo) and differentiable on 
(0, oo with 

d 
H ( Z )  >i u [ H ( f ,  of,)  - H(f , ) ]  >i o (2.2) 

There is equality on the right exactly when fo = MY~ 
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Before establishing this result, we collect some useful properties of 
entropy, relative entropy, and a regularization procedure which is very 
convenient in our setting. These results will be used in later sections as well. 

For any two probability densities t/ and p on N", D(qlp) denotes the 
relative entropy of t /with respect to p, and is given by 

DOI I P ) = fR~ ( ~ )  ln ( ~ )  P(Y) d"Y (2.3) 

Since t~-~tln t is convex and bounded below, D(tllp ) is always well 
defined and nonnegative. In fact, by the results quoted before, (31'36) 

D(v/i p) ~> �89 2 - p II L'(~o)  (2.4) 

and since (s, t)~-*sln s - s l n  t is jointly convex, it follows easily that 
(q, p) ~--~ D(tllp) is jointly convex. 

The entropy H(v/) is given by 

H(t/) = -fR,, it(y) In t/(y) dny (2.5) 

which is always well defined when t/ has finite second moments. Actually, 
to define HOt), we assume finite second moments and let G" denote the 
normal, i.e., Gaussian, density with the same mean and variance as t t. We 
then put 

H(vl ) = H( G") - D(vl I G '7) (2.6) 

If D(t/I G ") is finite, then tln r / -  In G~h t/is integrable (see ref. 8 for a simple 
proof), and hence [ln v/I q is integrable. So H is given by (2.5). Whenever we 
refer to the entropy of a density, it is implicitly assumed that the density 
has finite second moments. In the context of the Boltzmann equation, this 
convention is entirely natural. 

Entropy is well known to be a strictly concave function of the density 
and upper semicontinuous in the weak LI(~  n) topology. There is a proof 
in ref. 17. Here we shall use only the concavity of H restricted to densities 
of zero mean and unit variance. This follows directly from (2.6) and what 
we have already said about the convexity of D. 

The strict positivity of the relative entropy immediately implies the 
strict subadditivity of the entropy: Let q(y, z) be a density on Nn x ~", and 
let th(y) = ~ ,  tl(y, z) dnz and ~2(z) = ~m tt(y, z) dmy denote the marginals 
densities of t/. Then 

H(q) ~< H(r/1 ) + H(r/2 ) (2.7) 
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and provided H(t/) is finite, there is equality exactly when t/(y, z ) =  
t/l(y) ~/2(z) almost everywhere. To see this, suppose H(q) is finite, or there 
is nothing to prove. Then computing the relative entropy of t/with respect 
to the product of its marginals, one finds 

L'(~") ~< D(~/I t/' rh) = --H(r/) + H(~/~) + H(r/2) 

(Note that r/~ and r/2 have finite second moments whenever t/ does.) Since 
H(t/) is finite, it can be added to both sides. 

This has the following consequence: 

k f lmma 2.2. For all densities f on ~3 with H ( f )  > - ~ ,  

H ( f o f )  >1 H ( f )  (2.8) 

with equality exactly when f = M f. 

ProoL Fix any unit vector co, and put 

Put 

t/(v, v') = f ( v  + E(v ' -  v). co] e)) f ( v ' -  [(v' - v). co] co) = f (g)  f ( V )  

f % f ( v ) = j ~ 3 f ( v +  [ ( v ' - v ) . c o ] c o ) f ( # -  [ ( v ' - v ) - c o ]c o )  d3v ' (2.9) 

Then 

f~3q(v,v ')d3v'=foo~f(v) ,  f ~ 3 t l ( v , v ' ) d 3 v = f % f ( v  ') (2.10) 

Also, since d3v d3v'= d3O d3~ ', H(t / )=  2H(f ) .  Subadditivity of the entropy 
(2.7) and (2.10) then yield 2 H ( r / ) ~ 2 H ( f % f ) .  Averaging both sides over 
co and appealing to the concavity of the entropy yields (2.8). If there is 
equality, then rl(v, v') must be the product of its marginals for almost every 
co, and this is only the case when f =  M f. (See ref. 15 for a method of proof 
which applies even without moment assumptions. The basic observation, 
however, goes back to Maxwell. (43)) | 

The relative entropy is anne  invariant. Let d :  ~" --* ~" be the affine 
transformation given by s~: y ~ Ay - Yo with a nonsingular, and for any 
density q define t/~' by t / ~ ( y ) =  Idet(A)l t / (d(y)) .  Then clearly 

D ( q f  t r / f )  = D(ql, tl2) (2.11) 

The Wild convolution commutes with the action of a special class of 
affine transformations: 
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k e m m a  2.3. Let ~ :  ~3 .__4. ~3 be given by s~r v ~ av - u with a > 0 
and u e R 3. Then for any probability density f o n  R 3, 

f ~  o f  o~" = ( f  o f ) ~  

Proo[. 

fdof'~'=a6fs2f~3f(a{v+[(v'-v).o)]o)}-u) 
x f (a{v '  - v )  . o)] o)} - u) d3v ' do) 

~ a  6 

x f ( d ( v ' )  - { [ s J ( v ' ) -  ~4(v)]. o)} co) d31j ' do.) 

= a3fof(sJ(v))  | 

Next we introduce the heat semigroup f#;~ = e )~/2, Z > 0, which acts by 
convolution with Gx(y)=(2rc2)-n/Ze lylz/2; Since Gz is a probability 
density, f#xt/ is a probability density whenever t/ is; in fact fgxt/ is just an 
average of translates of t/. 

I .ornma 2.4. For all probability densities t/l, 172 and all 2 > 0 ,  

ProoL For y' e R ~, let Ty,t/(y) = t / ( y -  y'). Then 

D(f~xrhlf~xrl2)=D(f Gj.(y') Ty,tl, dny' f Gx(y ') Ty,tl2d"y') 

<. f G x(y') D( T~,rll I Ty, t/2) amy '= D(tl, It/2) 

using the joint convexity and translation invariance of the relative 
entropy. | 

The action of the heat semigroup commutes with our Wild convolu- 
tion. This result is due to Morgenstern, (5~ who also establishes if for planar 
Maxwellian molecules. The following proof is patterned after that used by 
McKean to establish the analogous result for the Kac model. (44) 

L e m m a  2.5. For all probability densities f on ]~3 and all 2 > 0 

ff;~(f o f )  = (fix f )  o (~ f f )  
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Proof. For any fixed co, let (v, v')~-~(~, g') be the transformation 
given in (1.6). The proof follows very easily from two simple invariances, 
namely d3v d3v ' = d3O d3~ ' and G~(v) G;,(v') = G~(~) G2J~'), and Fubini's 
theorem. We have 

(~.f) o (~f)(v)  

= fs2f~3 {f~3f~3 Ga(w)Gx(w')f(v+ [(v '-v) .co]co-w) 

-- W') d3w d3w '} d3v ' dco • f ( / ) '  - [(v'-  ( 1 ) ] ( O  

x f ( ( v - w ) +  {[v ' -w ' ) - (v-w)]-co}co)  

x f ( ( v ' -  w') - { [ ( v ' -  w') - (v - w)] .  co} co) d3w d3w '] d3v , de) 

x f ( ( v - w ) +  { [ ( v ' - w ' ) - ( v - w ) ]  .co}co) 

xf( (v ' -  w')- {[v'-  w')- (v- w)]. co }co)d3v ' ] d~w ' dco } d3w 

=~;.(fof)(v) | 

The heat semigroup clearly regularizes probability densities in several 
ways, but for our purposes the most useful regularizing semigroup is the 
adjoint Ornstein-Uhlenbeck semigroup. Its operators 4.  are given by 

~) tl(y) = f~, G(~-e 2~)lJ2(Y')e-";'tl(e-~(Y -- Y')) d"y' (2.12) 

For background on this semigroup see ref. 17. Note that 4.  is the composi- 
tion ,of a scale change and an action of the heat semigroup. Also, since the 
variance of the convolution of two densities is the sum of their variances, 
if f is a velocity distribution with temperature 0, ~ . f  has temperature 
(1 - e  z;-)+e-2Z0. So it is easy to see that i f f  is a velocity density with 
zero bulk velocity and unit temperature, then so is each ~ . f  and moreover 

lim @ f = f i  lim @ f = M  f (2.13) 
2 ~ 0  2 ~  

822/67/3-4-11 
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Thus, the adjoint Ornstein-Uhlenbeck semigroup provides a natural inter- 
polation between f and M f which preserves the class of zero-bulk-velocity, 
unit-temperature distributions. Its real advantage over the heat semigroup 
will only be explained in the next section, however. The smoothing proper- 
ties of @ will be used in the next section; here the only regularizing proper- 
ties we use are given by the following lemmas. See Barron (8) for a lemma 
related to our next lemma. 

Lemma 2.6. For any density f with zero bulk velocity and unit 
temperature 

Iln ~ f ( v ) l  ~ A~(1 + Ivl 2) 

for some constant A~. depending only on 2. 

Proof. Clearly from (2.12), ~f (v )<~G( l_e  2).)~/2(0). For a lower 
bound, 

@.f(v) = ;n3 G(l ~ 2;,),/2(v -- v')e 32f(e ;~(v')) d3v ' 

>~ f*v't < R G(A-e 22)1/'2(/) - -  •t)C -3;~f(e-~(v')) d3v ' 

1 
>1 2x(l_e-2~)~/2j  exp[-(lv12 + R2)(1-e-22)  1/2 

• f f (v ' )  d3v , 
d ]v'l ~< e)'R 

1 
>1 2~(1_e-2~)1/2] exp[-( lv]2 + R2)(1-e-2~)  -1/2] 

[ e 2~ iv,lZf(v,) d3v ') 
/ 

Choosing R - - e  2~ now gives the desired result. ] 

I . emma  2.7. For any two probability densities t/l and ~/2, and all 
2 > 0 ,  

D(~2 r] 1 [ .~; r/2 ) < D(t/, I r/z) 

In particular, for any velocity density with zero bulk velocity and unit 
temperature, 

H(~xf )  >1 H ( f )  (2.14) 
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ProoL Since ~ is the composition of a scale change and an action 
of the heat semigroup, the first inequality follows from Lemmas 2.3 
and 2.4. Next, if f has zero bulk velocity and unit temperature, so does M y. 
Therefore in this case ~ M F =  M y, so that 

D ( ~ f l M  f ) = D ( ~ . f I ~ M  f )  <~ D ( f I M  s) 

which is equivalent to (2.14) by (2.6). | 

L e m m a  2 . 8 .  For any density f, and all 2 > 0, 

~ , ( f  o f )  = (~xf) o (Q.f) 

ProoL This follows directly from Lemmas 2.3 and 2.5. 

Proof of Theorem 2. I. Since the relative entropy is affine invariant, 
so is ( d / d t ) H ( f , ) = - ( d / d t ) D ( f , ) .  Clearly H ( f o f ) - H ( f ) i s  affine 
invariant, so by Lemma 2.3, it suffices to assume fo has zero bulk velocity 
and unit temperature. By Lemma 2.7, if f, solves (2.1) with initial condition 

)Co, then f , =  ~af, solves (2.1) with initial condition Co= ~ffo-Then, since 
by Lemma 2.6, IlnL(v)l <~Az(l + lvl2), In j~,EjT, o L - L ]  ~L1([~3), and 

dt H(L) = - f In 

To better exploit the 
(1-e-~S)f ,  of,. Then 

g(O) =7,, 

so that 

But 

concavity of H, define 

d g(s) ~ d 
Z ~o = 5  ?, 

d H(g(s))  ~=o = d H(jTt) 

d H(-g(s)) 
dt = o 

= lim 1 [H(e_VS)7 + (1 - e-V~))7,o Z ) -  H(~t)] 
s ~ O  S 

g ( s ) = e - W f t +  

(2.15) 

~> lira 1_ Ee_~H@ ) + (1 - e  -~s) H ( L o L ) -  H(L)]  
s ~ 0  S 

= v E/-/(L o7,) - / 4 @ ) ]  
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In particular, by Lemma2.2, H()~t) is increasing. Now recalling that 
)7 t = ~ . f t ,  we have for any t2 > tl 

f,,2 H(~xft2 ) - H(~xftl ) ~> v [H(@(ft  oft)) - H(~;.ft)] dt (2.16) 
1 

where we have used Lemma 2.8 on the right side. Then by Lemma 2.7 we 
have 

H(f )  <, H ( ~ ( f t  oft)), H(~aft) <~ H(M f) 

Now the dominated convergence theorem allows us to take )~ to 0 in (2.16), 
which proves the theorem. | 

Romark. While the heuristic argument for Theorem 2.1 given at the 
end of the Introduction applies to the whole class of generalized Maxwelian 
collision kernels, the rigorous proof we have just given makes use of 
Lemma 2.5, which is not true is such generality. Probably the use of this 
lemma can be avoided. However, since we can extend the applicability of 
our main results to an even more general class of collision kernels by the 
monotonicity argument described in the Introduction, we have not 
investigated the matter too closely. 

3. F ISHER I N F O R M A T I O N  B O U N D S  

The fisher information I ( f )  of a velocity density is given by 

I ( f )=4f~  3 [gfl/2(v)12d3v=fN 3 [Vlnf(v)[2f(v)d3v (3.1) 

for all f such that fl/2 has a square-integrable distributional gradient. 
Otherwise it is defined to be oe. Under the same conditions, there relative 
Fisher information J( f )  between f and M F is defined by 

/ f \1/2 2 
J ( f ) =  f~3 V ~ - 7 )  Mf(v) d3v 

= f~3 IV In f (v)  - In Mi(v)[ 2 f (v)  d3v (3.2) 

Then an integration by parts gives 

3 
J( f )  = I ( f )  - - -  (3.3) 

O(f) 
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where O(f) is the temperature of f Since J( f )  clearly vanishes only when 
f =  M f 

I ( f )  >~ I(M f) (3.4) 

which equality exactly when f =  M f which is to be compared with (1.7). 
Other useful properties which I and - H  have in common are strict 

convexity, weak upper semicontinuity, and strict superadditivity. (25'28) The 
convexity is easy to establish directly. Fisher information and entropy are 
related in many ways; e.g., both arise as rate functions in the theory of 
large deviations, as explained in refs. 25 and 28. The connection which is 
useful to us here is given by the following result due to Bakry and Emery (6) 
and in an equivalent form to Barton. (s) 

Lemma 3.1. For any velocity density with zero bulk velocity and 
unit temperature and with H ( f ) > - o o ,  2k-+H(~.f )  is continuous on 
[0, oo) and is continuously differentiable on (0, oo). Moreover, 

d 
H(~ . f )  = J ( ~ f )  

so tha~ in particular 

(3.5) 

D(f)  = J ( ~ f )  d2 (3.6) 

ProoL See, for example, Lemma 1.2 of ref. 17. Roughly, one com- 
putes the generator of ~ by differentiating and finds 

~2 ~ e2V'(v+ v) 

Then formal differentiation in 2 and integration by parts in v leads to (3.5). 
Abundant convexity and the regularizing properties of @ make it fairly 
easy to justify the formal computations and to prove the remaining 
assertions. | 

Many entropy inequalities can most easily be proved by first proving 
an inequality for J and then using (3.6) to deduce an entropy inequality as 
a consequence. In our remarks at the end of this section we shall have more 
to say on why this is the case, but one advantage of working with J is its 
essentially quadratic nature. 

The next result is an information counterpart of Lemma 2.2. It is also 
an analog of the Blachman-Stam convolution inequality for informa- 
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tion. (9754) However, its proof will only be given we have proved another 
technical lemma. 

I . e m m a  3.2. For any velocity density f, 

j ( f  of) <~j(f) (3.7) 

and when J(f) <~ ~, there is equality exactly when f = M y. 

Remark. Just as Lemma 2.2 followed easily from the strict subad- 
ditivity of the entropy, Theorem 3.2 follows from the strict superadditivity 
of the Fisher information, which is a close relation of Lemma 3.3 below; see 
ref. 15. The proof of Lemma 3.3 is essentially the same as the proof of the 
p = 2 case of Theorem 2 in ref. 15, but there the remainder term on the 
right side of (3.9) was not obtained. It will be used in the next paper of this 
series. 

Lemma 3.3. For all square-integrable functions G" N ' x  N " ~  N+ 
with square-integrable distribution gradient, let g(y) = [~R, G2(Y, z) d"z] 1/2. 
Then g has a square-integrable distribution gradient and with 

we have 

[[VyG[[2 = ;~. f~m ]Vya(y, z)]  2 dmy dnz 

Ilvgll2 = f~m IVg(y)l d'~y 

IlVy G II 2 _ IIVgll 2 

IlVgll ( ( ItV, Cll 2 

• G2(y, z) d'~y d"z 

Vlng(y) -Vy ln  G(y, z) 2 

(3.8) 

In particular, the right side is strictly positive unless G(y, z) = GI(y) G2(z) 
a.e. for some pair of functions G1, G2. 

ProoL We will formally manipulate distribution derivatives, since the 
arguments required to justify this can be found in full detail in the proof 
of Theorem 2 in ref. 15. We have 

1 d"z] dmy IlVgll 2=  f~mVg(y) .-~ [ f~, G(y, z)VyG(y, z) 

= ~ f  ~ f  [-V In g(y). Vy In G(y, z)] G(y, z) 2 a"y d"z 

(3.9) 
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For any positive ~, this is the same as 

~/~~ f ~  I~2lV In g(Y)l 2 + 1  , ~5 IVy In G(y, z)l 2 

- c~Vlng(y)--~VylnG(y,z) G2(y,z) dmyd"z 

Choosing e = IIVyGII/I}Vgll leads to the result after simple calculation. 

Proof of Lemmo 3.2. Fix any unit vector co and put 

G(v, v')= fl/2(v+ [ ( v ' - v )  .co]co) f ' /2(v'-  [ (v ' -v ) -co]co)  

-= fl/2(g) f,/2(O,) 

As before, put 

f %  f(v) = JRf3 f(v + [(v' - v)-co] co) f ( v ' -  [ ( v ' -  v)-co] co) d3v ' 

Then 

g~G(v, v ' )=  { I V -  (co .g)co]fl/2}(O)fl/2(O') 

+ f,/2(~)[(co. V) cofl/2](~t) 

so that in the notation of Lemma 3.3 and again using d3v d3v ' = d3v d3g ', 

IIV~Grl 2 = 4I(f).  Plainly, IIVNII = 4I(f%o f), so 

I( f  o~ f )  ~ I(f) (3.10) 

with equality just when G(v, v') is a product of functions of v and v' alone. 
Since I is a convex function of the density, 

I( f  o f ) =  I ( fs= ( f  %o f)de))<<, fs 2 I ( f  %, f)de) (3.11) 

Combining (3.10) and (3.11) yields (3.7) with equality exactly when there 
is equality in (3.10) for almost every co, and this is only the case when 
f = M  f II 

L e m m a  3,4. For all velocity densities f with zero bulk velocity and 
unit temperature, 

,~ ~ J ( ~ f )  (3.12) 
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is a continuous, monotone-decreasing function on (0, ~ ) ,  The decrease is 
strict unless f = M y and 

lim a ( ~ . f )  = J ( f )  (3.13) 
2 ~ 0  

whether J ( f )  is finite or not. 

ProoL First suppose that J ( f )  is finite. Let g be any other density 
with zero bulk velocity, unit temperature, and finite J. For any 2 > 0 put 

fIX)(v) = e3"~f(eXv) 

g(~.)(v) = (1 - e -2x) -3/2 g((1 - e -zx) - 112v) 

Then if �9 denotes convolution, g(x)* fCx) is another zero-bulk-velocity, 
unit-temperature distribution. The Blachman-Stam inequality (9's4) says 
that 

J(g(x) * f~x)) <~ (1 - e -2x) J(g) + e 2~j(f) (3.14) 

and there is equality exactly when both f and g are Maxwellian. [-The 
similarity between (3.7) and (3.14) should be noted; (3.14) can be given a 
simple proof starting from Lemma 3.3 very much along the lines of the 
proof of Lemma 3.2. This is done in ref. 15.] 

It follows from (2.12) that when g = M x, then gr �9 f(r = @ f  Since 
J (M f) = 0, (3.14) implies the monotonic decrease. 

Next, it is easy to see that for any 2 > 0, ~ x f  is finite for all f. McKean 
proves (3.12) in ref. 44, where J is replaced by I and ~x is replaced by %. 
His argument is easily adapted to our case; or, just as easily, one can use 
his result and the relation between 4,  and ff~ expressed by (2.12) to prove 
the claim. By the semigroup property of @, continuity at 2 = 0 implies 
continuity at all 2. | 

To state the main result of this section, we introduce some useful 
notation. For all velocity density fo with zero bulk velocity and unit 
temperature, defined 

;~f(x) = H(~,<S) - H ( S )  (3.15) 

which is always well defined since ~ , f  is bounded (as seen in the proof of 
Lemma 2.6), which implies that H ( ~ , f )  is finite. 

I . emma  3.5. On the set of all velocity denities fo with zero bulk 
velocity and unit temperature, 

f F---> ZS(~) 
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is strictly convex. Moreover, 

Zs(~) ~> 0 (3.16) 

with equality exactly when f = M y 

ProoL First note that @ . f =  M y exactly when f =  MJl as can be seen 
by Fourier transforming (2.12), for example. By Lemma 3.1, 

H(~,~f)  - H ( f )  = J(~; . f )  d2 (3.17) 

and since @ is linear and J is strictly convex (on densities with unit 
temperature), it follows that f ~ Zs(~C) is strictly convex for every x > 0. | 

T h e o r e m  3.6. For all velocity densities fo with zero bulk velocity 
and unit temperature, let f ,  be the corresponding solution of (2.1). Then 
for every ~c>0, t~--*Zj;(~c) is a monotone-decreaing function which is 
continuous on [0, oo) and is differentiable on (0, oo) and satifies 

d 
d7 z:;(~) ~< v [zs, os,(~) - z : ; (~ ) ]  ~< o 

There is equality on the right side exactly when f ,  = M y~ 
When in addition J( fo)  is finite, t~---~J(f,) is a monotone-decreasing 

function which is continuous on [0, oo) and is differentiable on (0, oo) and 
satisfies 

d J(L) ~ v[J(L oL)  - Y(L) ]  ~< 0 

with equality on the right side exactly when f ,  = M s~ 

Proof. First note that because of (3.17) and (3.13 ), 
limK~o(1/~c) Zs(~C) = J ( f ) ,  so that the statements about Zy(tC) imply those 
about J ( f ) ,  and only the former need be proved. 

As in the proof of Theorem 2.1, we put J~,=~;.ft, so that solves (2.1) 
with initial condition f0 = ~.fo.  

The idea of the proof is really the same as in Theorem 2.1 with the 
convexity of f~--* Xs(~C) in place of the concavity H. Formally the same 
argument can be made with J, which is also convex. However, it is difficult 
to work directly with J(f ,)  in a rigorous manner because the formal time 
derivative--even taking the regularization into account--involves some 
delicate terms. By working with Zr(~c), we avoid this, and in fact it turns 
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out that Zf(~c) is the more useful convex functional o f f  for our applications 
in the next section. 

As before, put g(s)= e-W)7, + ( 1 - e - ~ ' ) y ,  oo?,. Then, by the argument 
which established (2.15), 

d Zg(s)(K) d 
- =~z~(~) 
ds s=0 

But 

d Zg(s)(K) , o 

1 
= lim - [Z[, ,,7,+ (1 e-VS)y,or -- ZT,(~C)] 

s ~ O S  

~< lim _1 [e ~sZT,(~ ) + (1 - e -vs) Zy, oy,(~c) - ZT,(~)] 
s ~ O S  

= v [ z ~ , 4 ( K )  - z ~ ( ~ c ) ]  

By Lemmas 3.1 and 3.2, this last quantity is strictly negative unless 
f ,  = Mf0. 

This proves the result for the regularized solutions a~, of the Boltzmann 
equation. Using the dominated convergence theorem to remove the 
regularization on the solutions exactly as in the proof of Theorem 2.1, we 
obtain the result. I 

4. STABIL ITY  FOR THE H - T H E O R E M  

Before stating our results, we introduce some useful notation. We say 
that a function ~O is decreasing to zero if 0: R+ --+ R+ is continuous and 
monotone decreasing, and limR~oo 0 ( R ) = 0 .  We say it is decreasing 
strictly to zero if in addition O(R) > 0 for all R > 0. 

We say a function Z is increasing from zero if Z: N+--+ N+ is 
continuous and monotone increasing and Z(0)= 0. We say Z is increasing 
strictly from zero if in addition z(R) > 0 for all R > 0. 

For  any velocity density f with O(f) finite, define 

~I,u(R) = f IvlZ f (v )  d3v (4.1) 
Ivl > /R 

By the dominated convergence theorem, Of is decreasing to zero. 



Convergence to Equilibrium for Boltzmann Equation 801 

By Lemma 3.2, for every f with zero bulk velocity and unit tem- 
perature, ~c ~-+ )9(~c) is increasing from zero. 

Our main result is the following: 

Theorem 4.1. For any pair of functions r and X which are, respec- 
tively, decreasing to zero and increasing from zero, there is a function ~, .z  
which is strictly increasing from zero so that for all velocity densities f with 
zero bulk velocity, unit temperature, and finite entropy, the inequalities 

~9f ~< tp, Zf~<)~ (4.2) 

imply the inequality 

[ H ( f o f ) -  H ( f ) ]  = [ D ( f ) -  D ( f o f  )] ~> qS, , z (D(f ) )  (4.3) 

Proof. The argument we give closely follows the proof of 
Theorem 1.2 of ref. 17. 

It suffices to show that given any e > 0, there is a 5 > 0 so that 

i,]#f ~ i/1, ~f~Z,  D ( f ) > e  (4.4) 

together imply 

D ( f ) -  D ( f  o f )  >~ ~5 

By Lemma 3.1, 

[D( f )  - D ( f o f ) ]  -- [ D ( ~ f )  -- D ( ~ f o  ~ f ) ]  

= [ J ( ~ . f ) - J ( ~ f f o N a f ) ]  d2~>0 (4.5) 

With �9 denoting convolution, the fact that D ( f )  - D ( f  , f )  >~ D ( ~ f )  - 
D ( ~ f ,  ~ f )  was discovered by Dembo (=) independently of ref. 17; he 
gave no application. 

Next, since 

D(~,~f)  = D ( f )  -- Zf(~)/> D ( f )  - Z(K) 

we can choose a ~ > 0 small enough that 

8 
D ( ~ f )  >>. -~ 

for all densities f satisfying (4.4). 
Furthermore, it is easy to see that if ~,f ~< ~,, then 

~k~f(R) ~< 2 DP(R/2) + ~kM (R/2)] 
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for all R > 0, ~c > 0, where M is the Maxwellian with zero bulk velocity and 
unit temperature. 

Now a standard argument shows that the closure of 

is strongly compact in LI(~ 3, (1 4-Ivl2)d3v). For an explicit proof, see 
ref. 17. 

By Lemma 2.6, there is constant A~ so that the LI(~ 3, (1 q-[v[ 2) d3v) 
closure of ~ , r  is contained in 

{gE LI(~  3, (1 + Ivl z) d3v)I Iln g(v)l ~< AK(1 + IriS)} - - ~  

which is also a closed set. We equip it with the LI(R 3, (1 + IvlZ)d3v) 
topology. It is then easy to see that 

g ~ / - / (g )  

is continuous on each ~ .  Then, since g~-+go g is continuous on LI(~  3, 
(1 + Iv] 2) d3v), 

gw-~ [ D ( g ) - D ( g o  g)] 

is a continunous function on ~gK, o ~ ~ .  Thus 

inf{D(~,J)  - D ( ~ f  o ~ / ) l  Of <~ ~, xf ~ z, D(U) >1 e } 

is a minimum attained at some go contained in the closure of cg~,o. 
Moreover, by the continuity of D on NK, D(go)>~ el2. In particular, g is not 
M f, so that O(go) - O(go ~ > 0. Put 

6=D(go)-D(googo)  

Then by (4.5), for any f satisfying (4.4), 

[ D ( f ) - - D ( f  of)]  ~ [ D ( ~ K f ) - D ( ~ f  o~Kf)] ~>6>0 | 

In order to apply successfully this to the Boltzmann equation, we must 
be able to apply it uniformly in time. That is, we need to be able to find 
a pair of functions ~ and Z, respectively, decreasing to zero and increasing 
from zero so that 

4,j, ~< 4,, z ~ < z  

for all t >~ 0. 



Convergence to Equilibrium for Boltzmann Equation 603 

The second condition by now poses no problem. Theorem 3.6 shows 
that as long as H(fo) is finite, 

~ < ~  

so Z/b is a suitable choice for )6 
The first condition is slightly more problematic, and we must rely on 

global moment bounds of Elmroth (3~ to proceed. His method for obtaining 
global moment bounds applies in our setting without modification (and 
unfortunately without the possibility for significant simplification) and 
yields the result that if for some p > 2 

f tv[Pfo(v) d3v=B<o ~ 
N3 

then there is a constant C ,  depending only on B so that 

(4.6) 

f ~  ]V[ P L(V)  d3v <~ CB 

for all t > 0. 
Clearly, when (4.6) holds 

Of,(R)<~f R 2 PtvlPft(v)d3v<<.CBR 2-; 
Ivl >~ R 

Thus, when (4.6) is satisfied, ~b(R) = CBR 2.p is a suitable choice for ~. 
It is now easy to prove the following convergence theorem for the 
Boltzmann equation. 

Theorem 4.2. Let )Co be a velocity density with H(fo)> -oo  and 
S~3 ]vlPfo(v)d3v< oo. Let f ,  be the unique solution to (2.1) with the initial 
density )Co- Then there is a function g~ decreasing to zero and depending 
only on )~f0 and S~3 IvlPfo(v)d3v such that 

D(ft) ~< 5u(t) 

In particular, f ,  tends to M s~ strongly in LI(N s) at a depending only 
on ;(I0 and ~ [vlPfo(v)d3v. 

ProoL This is now an easy consequence of Theorem 2.1, Theorem 
4.1, and the remarks made just above. | 

Roroark. Since local L 1 stability is now well known, (27) one can 
combine it with the L 1 convergence to equilibrium implies by Theorem 4.2 



604 Carlen and Carvalho 

to obtain a global L 1 statilibity result as in refs. 3 and 4. Furthermore, one 
can use Theorem 4.2 to control the time it takes for f t  to reach a given 
small neighborhood of M F~ in LI(R 3, (1 + tv[2) p'/2 d3v) for any 2 < p ' <  p. 
Then with the neighborhood chosen small enough, the linearized 
Boltzmann equation takes over an describes the final approach to 
equilibrium. From a spectral analysis of the linearized collision operator 
like that in refs. 3 and 4 one should obtain exponential bounds on the 
approach to equilibrium with constants which are uniform in the classes of 
initial conditions to which Theorem 4.2 refers. 

Now for the first time since the beginning of Section 2 we turn to a 
wide class of collision kernels. The collision kernels we consider are those 
with rate functions which are uniformly bounded below. Making modifica- 
tions on small subsets of phase space, this includes many important 
physical cases. For  example, in the case of hard spheres, the microscopic 
rate function expressed as a function of v, v', and co is a constant multiple 
of ] ( v -  v') .  e)[. This vanishes when co is orthogonal to the relative velocity. 
Since such collisions have no effect, the effect of boosting the rate at which 
they occur should be negligible. Thus, while the hard-sphere collision 
kernel does not fall into the class we consider as it stands, it joins the class 
we consider after modification of its rate function on a small set of  phase 
which anyway corresponds to null collisions. This is an indication that the 
next result can be extended to include the hard-sphere collision kernel even 
without modification, as will be seen in our next paper. 

We give an analog only of Theorem4.1. Then an analog of Theorem 4.2 
again follows whenever the usual H-theorem can be established for the 
collision kernel under consideration. This can be done in great 
generality. (1'34) Of course, Theorem 3.6 is no longer available to control Z~ 
in terms of XF0. The simplest way to proceed is to use a convexity property 
of the entropy production which implies that the entropy production of 
~ f t  is less than that o f f ,  itself. This leads to estimates on the rate at which 
H~ft--Mf~ ) converges to zero. A better way to proceed is to 
prove propagation of smoothness results for the spatially homogeneous 
Boltzmann equation. In fact, Gustafsson's results can be used in this way. 
We will elaborate on these remarks, as well as the other remarks following 
Theorem 4.2, in the next paper of this series. 

Theorem 4.3. Let ~ be a collision kernel in which the rate function 
is bounded below by a positive constant v: 

inf{b(t, 0)l t, 0, 0 ~ 0 ~ re} = v > 0  

Then for any pair of functions ~0 and Z which are, respectively, decreasing 
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to zero and increasing from zero, there is a function qso, x which is strictly 
increasing from zero so that for all velocity densities f with zero bulk 
velocity, unit temperature, and finite entropy, the inequalities 

imply the inequality 

- ;~3 In f ~(f, f )  d3v ~ q~,z(D(f)) 

ProoL Put b(l) = b -  v, b(2 ) = v. Both are positive. Let ~(1) and ~-(2) be 
the corresponding collision kernels. Then 

- f~3 In f ~(f, f )  d3v 

= - [ - f ~ 3 1 n f ~ ( 1 ) ( f , , f ) d 3 v J + [ - f ~ 3 1 n . f ~ ( 2 ) ( f , , f )  d3v] (4.7) 

But the first term in (4.7) is positive by the easy part of the usual 
H-theorem, and Theorem 4.t applies to the second term. | 
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